Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.

Identifieur interne : 001D03 ( Main/Exploration ); précédent : 001D02; suivant : 001D04

Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.

Auteurs : Bin Liu [Allemagne] ; Heinz Rennenberg ; Jürgen Kreuzwieser

Source :

RBID : pubmed:25398429

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Hypoxia leads to NO formation in poplar roots. Additionally, either NO or a NO derivative is transported from the roots to the shoot causing NO emission from aboveground plant organs. Nitric oxide (NO) is involved in the response of plants to various forms of stress including hypoxia. It also seems to play an important role in stomatal closure during stress exposure. In this study, we investigated the formation of NO in roots of intact poplar (Populus × canescens) plants in response to hypoxia, as well as its dependence on nitrate availability. We further addressed the question if root hypoxia triggers NO emission from aboveground plant parts, i.e., stems and leaves of young poplar trees. Our results indicate that NO is formed in poplar roots in response to hypoxia and that this production depends on the availability of nitrate and its conversion product nitrite. As long as nitrate was available in the nutrient solution, NO emission of roots occurred; in the range of the nitrate concentrations (10-100 µM) tested, NO emission was widely independent on nitrate concentration. However, the time period in which NO was emitted and the total amount of NO emitted strongly depended on the nitrate concentration of the solution. Hypoxia also led to increased NO emissions from the leaves and stems of the trees. There was a tight correlation between leaf and stem NO emission of hypoxia-treated plants. We propose that NO is produced by nitrate reductase in the roots and either NO itself, a metabolic NO precursor, or a NO derivative is transported in the xylem sap of the trees from the roots to the shoot thereby mediating NO emission from aboveground parts of the plant.


DOI: 10.1007/s00425-014-2198-8
PubMed: 25398429


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.</title>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110, Freiburg, Germany, bin.liu@ctp.uni-freiburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110, Freiburg, Germany</wicri:regionArea>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25398429</idno>
<idno type="pmid">25398429</idno>
<idno type="doi">10.1007/s00425-014-2198-8</idno>
<idno type="wicri:Area/Main/Corpus">001F24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F24</idno>
<idno type="wicri:Area/Main/Curation">001F24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F24</idno>
<idno type="wicri:Area/Main/Exploration">001F24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.</title>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110, Freiburg, Germany, bin.liu@ctp.uni-freiburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110, Freiburg, Germany</wicri:regionArea>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Dioxide (metabolism)</term>
<term>Nitrates (metabolism)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Seedlings (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Nitrates (métabolisme)</term>
<term>Oxygène (métabolisme)</term>
<term>Plant (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Nitrates</term>
<term>Nitric Oxide</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Monoxyde d'azote</term>
<term>Nitrates</term>
<term>Oxygène</term>
<term>Plant</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Hypoxia leads to NO formation in poplar roots. Additionally, either NO or a NO derivative is transported from the roots to the shoot causing NO emission from aboveground plant organs. Nitric oxide (NO) is involved in the response of plants to various forms of stress including hypoxia. It also seems to play an important role in stomatal closure during stress exposure. In this study, we investigated the formation of NO in roots of intact poplar (Populus × canescens) plants in response to hypoxia, as well as its dependence on nitrate availability. We further addressed the question if root hypoxia triggers NO emission from aboveground plant parts, i.e., stems and leaves of young poplar trees. Our results indicate that NO is formed in poplar roots in response to hypoxia and that this production depends on the availability of nitrate and its conversion product nitrite. As long as nitrate was available in the nutrient solution, NO emission of roots occurred; in the range of the nitrate concentrations (10-100 µM) tested, NO emission was widely independent on nitrate concentration. However, the time period in which NO was emitted and the total amount of NO emitted strongly depended on the nitrate concentration of the solution. Hypoxia also led to increased NO emissions from the leaves and stems of the trees. There was a tight correlation between leaf and stem NO emission of hypoxia-treated plants. We propose that NO is produced by nitrate reductase in the roots and either NO itself, a metabolic NO precursor, or a NO derivative is transported in the xylem sap of the trees from the roots to the shoot thereby mediating NO emission from aboveground parts of the plant.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25398429</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>241</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.</ArticleTitle>
<Pagination>
<MedlinePgn>579-89</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2198-8</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">Hypoxia leads to NO formation in poplar roots. Additionally, either NO or a NO derivative is transported from the roots to the shoot causing NO emission from aboveground plant organs. Nitric oxide (NO) is involved in the response of plants to various forms of stress including hypoxia. It also seems to play an important role in stomatal closure during stress exposure. In this study, we investigated the formation of NO in roots of intact poplar (Populus × canescens) plants in response to hypoxia, as well as its dependence on nitrate availability. We further addressed the question if root hypoxia triggers NO emission from aboveground plant parts, i.e., stems and leaves of young poplar trees. Our results indicate that NO is formed in poplar roots in response to hypoxia and that this production depends on the availability of nitrate and its conversion product nitrite. As long as nitrate was available in the nutrient solution, NO emission of roots occurred; in the range of the nitrate concentrations (10-100 µM) tested, NO emission was widely independent on nitrate concentration. However, the time period in which NO was emitted and the total amount of NO emitted strongly depended on the nitrate concentration of the solution. Hypoxia also led to increased NO emissions from the leaves and stems of the trees. There was a tight correlation between leaf and stem NO emission of hypoxia-treated plants. We propose that NO is produced by nitrate reductase in the roots and either NO itself, a metabolic NO precursor, or a NO derivative is transported in the xylem sap of the trees from the roots to the shoot thereby mediating NO emission from aboveground parts of the plant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110, Freiburg, Germany, bin.liu@ctp.uni-freiburg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kreuzwieser</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25398429</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2198-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2012;2012:pls004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22479675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 May;36(5):1019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23146102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23 ):24100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15056652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Jul;161(7):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1582-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Sep 3;583(17):2907-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19660460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 May;6(3):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 19;8(8):e71543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Feb;86(2):378-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):142-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Mar 21;380(6571):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1375-1381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jul;63(12):4375-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22641422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16314-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 May;219(1):66-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2006 Mar;1(2):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(5):732-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(2):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Mar;16(3):160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21185769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Apr;26(4):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16414931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jan;53(366):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Apr;51(4):576-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Dec 15;585(24):3843-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22036787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Sep;63(15):5581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jul;22(10):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Jan;237(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23011570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:109-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):13-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Apr;8(4):e23578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23333978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1773-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Oct;37(10):2245-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Oct;1777(10 ):1268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2002 Jan;44(1):56-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11727042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 May;219(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Sep;35(6):763-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25398429
   |texte=   Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25398429" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020